Toward a Practical Strategy for Mitigating Highway Impacts on Wildlife

Scott D. Jackson and Curtice R. Griffin
Department of Forestry and Wildlife Management
University of Massachusetts
Amherst, MA

Abstract

There is evidence that animal passage systems can be designed to facilitate movement of certain wildlife species across highways. However, the effectiveness of highway mitigation systems has not been evaluated with respect to the majority of wildlife species. It is probable that some will not require specific design features while others will require careful attention to factors such as placement, size, substrate, noise, temperature, light and moisture. While it may be impractical to design each mitigation project to account for the specific requirements of all species expected to use it, it may be possible to develop a generalized strategy for making highways permeable for a large number of species. This strategy may require a variety of techniques given that the specific requirements for particular species may be contradictory.

Some of the most effective techniques for facilitating wildlife movement (e.g. overpasses) are also quite expensive. A practical strategy for mitigating highway impacts on wildlife movement may dictate that expensive elements be reserved for areas that are identified and designated as important travel corridors or connections between areas of significant habitat, while inexpensive elements can be used at appropriate areas throughout the highway alignment.

A practical strategy for mitigating highway impacts should first focus at the landscape level, using the most effective techniques available to maintain landscape connectivity and metapopulation dynamics within designated “connectivity zones.” In addition to the maintenance of some level of ecosystem function, cost effective techniques should be practically employed throughout the highway alignment to maintain local wildlife populations.

Introduction

Road and highway construction affects wildlife through the direct loss and fragmentation of habitat, by introducing a source of additive mortality for wildlife populations, and by disrupting animal movement and dispersal. In the U.S., road and highway projects that fall within the jurisdiction of federal and state wetlands protection laws are routinely evaluated for wildlife impacts. A variety of habitat evaluation methods have been developed to help assess the impact of projects on habitat for wetlands wildlife. However, road and highway impacts on wildlife mortality, animal movement and dispersal generally receive little attention. EPA’s 404(b)(1) guidelines emphasize impacts on travel corridors of aquatic species, yet, we currently lack a practical strategy for mitigating the impacts of roads and highways on wildlife movements that can easily be incorporated into highway design and permitting decisions.

Impacts of Roads and Highways on Wildlife Populations

Both large highways and smaller roads are known to affect animal movements. Studies have documented that several species of small mammals are reluctant to cross even relatively small roads (Oxley et al. 1974, Mader 1984, Swihart and Slade 1984). When traffic volume is high, small roads can represent a significant source of mortality affecting populations of reptiles and amphibians (Gelder 1973, Langton 1989a, Bernardino and Dallymple 1992, Patla and Peterson 1994, Fowle 1996). With their larger size and higher traffic volumes, highways represent a more serious threat to wildlife, affecting a wider range of wildlife species and presenting an almost impassable barrier for many species of reptiles, amphibians and small mammals.

Highways constitute substantial barriers to animal movements. Wide-ranging mammal species can lose access to important habitats as their movements are restricted by highways. Critical habitats required by wildlife species can be separated on either side of a highway, jeopardizing local populations. In Glacier National Park in Montana, mountain goats (Oreamnos americanus) must cross U.S. Highway 2 in order to access an important mineral lick (Singer and Dohaty 1985). By separating aquatic habitat and upland nesting habitat for turtles, or terrestrial habitat and aquatic breeding sites for amphibians, highways can have significant adverse impacts on local populations of those species (Langton 1989a, Fowle 1996, Jackson 1996). As individual animals are killed trying to cross a highway or denied access to critical habitats, local populations will likely fail or be substantially reduced. Studies in Canada indicate a correlation between traffic intensity and lower densities of calling anurans (Fahrig et al. 1995) and between the density of paved roads within 1-2 km of wetlands and the diversity of wildlife in those wetlands (Findley and Houdean 1997). In some cases road mortality has been identified as an important threat affecting endangered species/subspecies such as the Florida Panther (Felis concolor coryi) (Mather et al. 1991), Old World badger (Meles meles) (Zee et al. 1992), and Iberian lynx (Felis pardina) (Ferrera et al. 1992).

As barriers to animal movements, highways also threaten to disrupt population and metapopulation dynamics that maintain local and regional populations of wildlife. In this context, the local population is used to mean a group of individuals of one species occupying a space that allows them, in the course of their normal movements, to interact and interbreed with each other. A regional population, or metapopulation, is defined as a set of local populations which interact via the infrequent movement of animals between local populations (based on definitions in Levins 1970, and Hanski and Gilpin 1991).

The dispersal of individuals between populations has been shown, based on theoretical grounds (Leigh 1981, Fahrig and Merriam 1985, Hanski and Gilpin 1991, Beier 1993) and field studies (Gill et al. 1978, Corn and Fogleman 1984, Breden 1987, Berven and Gruzdien 1990, Sjogren 1991), to be important for the maintenance of genetic viability within local populations, and for maintaining local and regional populations in the face of population extinctions. Local population extinctions may occur due to random genetic and demographic events, environmental variability and natural catastrophes (Shaffer 1981). Population
extinction is more likely to occur in smaller populations, such as those produced by habitat fragmentation (Shaffer 1981, Shaffer and Samson 1985). Dispersal among local populations is important for maintaining gene flow, supplementing small or declining populations, and recolonizing local populations lost to extinction events. Effects of habitat fragmentation on metapopulation dynamics (Dodd 1990, Beier 1993, Gibbs 1993, Blaustein et al. 1994, Fahrig and Merriam 1994) and specifically, the impacts of roads and highways on local and regional populations (Mader 1984, Andrews 1990, Reh and Seitz 1990, Patla and Peterson 1994) are important factors affecting the long-term persistence of populations. As barriers to animal dispersal, highways constitute an important long-term threat to the maintenance of healthy wildlife populations.

Mitigating Impacts on Wildlife Movement

In order to design effective wildlife passage structures, attention needs to be paid to features that affect their utilization.

Placement: Placement of passage structures can be very important for some species, even relatively mobile species. Travel distance (to reach a passage way) may be especially important for small animals. Mammals are generally capable of learning to use underpass or overpass systems and may transfer that knowledge to succeeding generations (Ford 1980, Ward 1982, Singer and Doherty 1985, Land and Loezt 1996, Paquet and Callaghan 1996). This is unlikely to be the case with reptiles and amphibians. This learning may result in improved mitigation success over time for more mobile species, even for underpasses that are not placed at traditional crossing points. Even so, many people consider placement to be the single, most important factor affecting the success of passage structures (Podloucky 1989, Foster and Humphrey 1995, Rodriguez et al. 1996, Rosell et al. 1997).

Size: It is difficult to determine critical size thresholds for passage structures because these size thresholds undoubtedly vary from species to species. For some species, openness - the size of underpasses relative to the width of the roadway - may be more important than absolute size (Reed et al. 1979, Foster and Humphrey 1995). Tunnel layouts that allowed animals to see the opposite end of a wildlife passage were positively correlated with utilization for some species (Rosell 1997). In general, bigger is better. However, some species, such as Old World badgers (Pauline Schakenbos pers comm.) and some small mammals (Hunt et al. 1987, Rodriguez et al. 1996), may prefer small underpasses. Based on studies of ecoducts in Europe, some have recommended that wildlife overpasses be at least 50 m wide (Keller and Pfister 1997).

Light: Some species are hesitant to enter underpasses that lack sufficient ambient light (Jackson and Tying 1989, Krikowski 1989, Jackson 1996). Conversely, there is evidence that species that are sensitive to human disturbance (e.g. mountain lions, Felis concolor) avoid areas that are artificially lit (Beier 1995). Maintenance of natural lighting through the use of overpasses, large underpasses or open-top (grated) underpasses may help address these concerns.

Moisture: Maintenance of wet substrate is important for some amphibians species. Shrews are often more active (or more mobile) on rainy nights and also may prefer wet substrates for traveling. Underpasses at stream crossings will probably suffice for species that utilize riverine or riparian habitat. However, many amphibian species do not use riparian or riverine areas for migration and the presence of flowing water may deter usage by these species. Open-top (grated or slotted) underpasses do provide sufficient moisture for crossings that lack flowing water. Alternatively, innovative stormwater systems might be designed for closed-top systems that would provide enough water to maintain moist travel conditions without creating flooded or stream-like conditions. Proper drainage is important, because some wildlife species are less likely to use structures when they contain standing water (Janssen et al. 1997, Rosell et al. 1997, Santolini et al. 1997).

Temperature: Small underpasses may create temperature disparities (inside vs. outside) that deter use by some amphibians (Langton 1989b). Larger underpasses or open-top systems that allow for more air flow may help address this concern.

Noise: Traffic noise can be a problem for some mammals, especially those sensitive to human disturbance. Certain underpass designs (those with expansion joints and those with uncovered medians) can be quite noisy (Foster and Humphrey 1995, Santolini et al. 1997). Open-top designs would be inappropriate for species that are sensitive to traffic noise. Overpass systems that incorporate tree and shrub buffers along the edges, appear to be much quieter than underpass systems.

Substrate: Some small animals feel more secure utilizing a crossing system if it provides sufficient cover. For example, rows of stumps in an underpass appear to facilitate use by small mammals (Linden 1997). Maintaining or replicating stream bed conditions within over-sized culverts may facilitate use by salamanders, frogs, small mammals and aquatic invertebrates, thereby maintaining habitat continuity in the area of stream crossings. Certain species (e.g. mountain pygmy possums, Burramys parvus) with very specific substrate requirements may require special attention at wildlife crossings (Mansergh and Scotts 1989).

Approaches: Characteristics of the approaches to underpasses or overpasses may affect their use by some species. Forested species, such as black bears (Ursus americanus), prefer well vegetated approaches. Other species, such as mountain goats, appear to prefer approaches that provide good visibility. At Glacier National Park, mountain goats have apparently shifted movement patterns away from a traditional crossing point rather than utilize an underpass that offers poor visibility on the approaches (Pedevillano and Wright 1987). The presence of cover on the approaches, in the form of vegetation, rocks and logs, may enhance use by a variety of small and mid-sized mammals (Hunt et al. 1987, Rodriguez et al. 1996, Rosell et al. 1997, Santolini et al. 1997). However, vegetation at the entrance of an underpass may deter some mammals that are wary of conditions that provide ambush opportunities for predators.

Fencing: Although some species may utilize underpass or overpass systems without fences, some form of fencing does appear to be necessary for most species. Fences help guide animals to passage systems and prevent wildlife from circumventing the system. Mountain lions moving along stream corridors have been observed to leave stream valleys and cross over highways rather than utilize large culverts (Beier 1995). This has also been observed for two species of turtles in Massachusetts (J. Milam, pers. comm.). Ungulates commonly
seek to avoid underpasses and will generally use them only if other access across the highway is barred (Ward 1982). In Banff National Park an elaborate system of multiple arched fences is used to deter wildlife from walking around fences (B. Leeson, pers comm.). Some species are relatively good at circumventing fences by climbing over (black bears) or digging under (coyotes, (Canis latrans), and badgers) standard fencing (Ford 1980, Gibeau and Heuer 1996). Standard fencing is also ineffective for small animals.

If mitigation objectives are defined too narrowly, mitigation projects can create as many problems as they solve. An obvious example of this is the use of fencing along highways to reduce wildlife road mortality, often for human safety reasons. When these fences are installed without crossing structures, they can compound the fragmentation effects of highways on populations, metapopulations and habitat. In designing wildlife passages, it is important to remember that different species have different requirements. If fence and passage systems are not designed for use by a broad range of wildlife, a project that facilitates passage for one species might constitute an absolute barrier for another.

Toward a Practical Strategy

There is evidence that animal passage systems can be designed to facilitate movement of certain wildlife species across highways. Where the conservation of a particular species or group of species is concerned, specifically designed mitigation has proven successful for a number of species. However, the effectiveness of highway mitigation systems have not been evaluated with respect to the vast majority of wildlife species affected by highways. It is probable that some species, such as raccoon (Procyon lotor) and skunks (Mephitis sp.), will not require specific design features while others will require careful attention to factors such as placement, size, substrate, noise, temperature, light and moisture. Some species, such as moles or terrestrial turtles, may represent a substantial challenge even to a single-species approach to mitigation.

In areas where road and highway density is high, conservation of particular species may be of lesser concern than the maintenance of overall habitat connectivity. There is evidence that roads and highways represent substantial barriers to wildlife movement, especially for small species with limited mobility. As blocks of habitat are carved up into smaller and more isolated pieces, facilitating wildlife movement among these blocks will be critical to the maintenance of viable wildlife communities in these areas.

While it may be impractical to design each passage structure to account for the specific requirements of all species expected to use it, it may be possible to develop a generalized strategy for making highways more permeable to wildlife passage for larger numbers of species. This strategy may require a variety of techniques given that the specific requirements for particular species may be contradictory. For example, open-top culverts may provide favorable lighting, temperature and moisture conditions for amphibians but may be too noisy for some mammals.

Following are some elements and considerations for developing a generalized strategy for wildlife passage mitigation.

Wildlife Overpasses: Wildlife overpasses have been constructed in Europe, the U.S., and Canada. The most effective overpasses range in width from 50 m wide on each end narrowing to 8-35 m in the center, to structures up to 200 m wide. Soil on these overpasses, ranging in depth from 0.5 to 2 m, allows for the growth of herbaceous vegetation, shrubs and small trees. Some contain small ponds fed by rain water. Wildlife overpasses appear to accommodate more species of wildlife that do underpasses. Primary advantages relative to underpasses are that they are less confining, quieter, maintain ambient conditions of rainfall, temperature and light, and can serve both as passage ways for wildlife and intermediate habitat for small animals such as reptiles, amphibians and small mammals. They are probably less effective for semi-aquatic species, such as muskrats (Ondatra zibethicus), beavers (Castor canadensis) and alligators (Alligator mississippiensis). By providing intermediate habitat, overpasses may provide the only feasible means for allowing various species of moles to cross highways. The major drawback is that they are expensive.

Wildlife Bridges: Wildlife bridges are large underpasses (up to 30 m wide, 4 m high) that provide relatively unconfined passage for wildlife. These structures provide plenty of light and air movement, but are generally too dry for some species of amphibians. Wildlife bridges with open medians provide a certain amount of intermediate habitat for small mammals, reptiles and amphibians. However, open median designs are much noisier than continuous bridges and may be less suitable for species that are sensitive to human disturbance. While less expensive than overpasses, wildlife bridges are also fairly costly.

Viaducts: Viaducts are areas of elevated roadway that span valleys and gorges. They differ from bridges in that they are typically higher and cross streams and rivers as well as adjacent valley habitats. Viaducts provide relatively unrestricted passage for riverine wildlife and species that utilize riparian areas for movement. The height of viaducts may accommodate vegetation of vegetated habitats beneath the structure and provides a sense of openness that is required for many species.

Expanded Bridges: Where roads and highways cross rivers and streams, expanded bridges that provide upland travel corridors adjacent to the waterway can provide passage ways for many species of riverine wildlife, as well as other species that may utilize stream corridors for travel. Higher bridges with wider areas for passage underneath tend to be more successful than low bridges and culverts.

Overcross Stream Culverts: Where culverts are used to cross streams and small rivers, oversized culverts, large enough to allow for wildlife passage, may be used. Box culverts generally provide more room for travel than large pipes. Efforts to provide natural substrate, including large flat rocks as cover for small animals, will enhance their use by some species. Construction of benches on one or both sides of the stream to allow dry passage during normal high water periods will also enhance these structures. The optimum size for these structures is not known but, generally, the larger the better. Culverts are less expensive than expanded bridges, but are also less effective (Reiter 1989).

Upland Culverts: Not all species of wildlife readily use stream or river corridors for travel routes. Therefore, a comprehensive approach to the maintenance of habitat connectivity must include structures allowing overland movement between wetlands and uplands, between uplands and uplands, and from wetlands to wetlands. Movements to and from wetlands are particularly important for amphibians and turtles. Wildlife bridges (see above) may provide upland passage for larger species. Relatively small amphibian and reptile tunnels may be a cost effective means of mitigating highway impacts where roads and highways are located between wetlands and upland habitats. Again, box culverts are generally preferable over pipes. Larger culverts will generally accommodate more species than smaller ones. Open-top culverts can be expected to provide more light and moisture, and will be more effective for facilitating amphibian movements. Although there is evidence that amphibian and reptile tunnels are effective when used with two-lane roads (Langton 1989a, Boorman and Szakci 1996, Jackson 1996, Jenkins 1996), it is not known how effective they will be for facilitating passage beneath highways of four or more lanes.

Fencing: Fencing for large and medium-sized mammals is required for underpass and overpass systems to be effective. Standard fencing may not be effective for some species (black bears, coyotes), but manipulations of wildlife trails and vegetation
can also be used to guide animals to passage ways (Roof and Wooding 1996) and learning may enhance their effectiveness for these species over time. Fencing for large mammals must also include one-way gates to prevent animals that get onto roadways from being trapped between fences on both sides of the road. Fencing for small mammals, reptiles and amphibians must be specifically designed to prevent animals climbing over and through, or tunneling under the fencing. Short retaining walls can provide relatively maintenance-free barriers for reptiles, amphibians and small mammals.

Travel Distances: Large passage structures suitable for more mobile species do not have to be spaced as closely as passage ways designed for small mammals, amphibians and reptiles. A mixture of widely spaced large structures and more frequent small structures positioned to facilitate animal passage within designated "connectivity zones" would likely represent a more cost effective strategy for mitigation than a series of large multi-species structures.

Some of the most effective techniques for facilitating wildlife movement (e.g. overpasses) are also quite expensive. A practical strategy for mitigating highway impacts on wildlife movement may dictate that expensive elements be reserved for areas that are identified and designated as important travel corridors or connections between areas of significant habitat, while inexpensive elements (amphibian and reptile tunnels, oversize culverts, expanded bridges) can be used at appropriate areas throughout the highway alignment. In developed areas, corridors and habitat connections may be readily apparent. For highway projects affecting a significant amount of undeveloped land it may be necessary to conduct landscape analyses to identify "connectivity zones" for special mitigation attention.

Landscape analyses for the purposes of identifying "connectivity zones" may vary. An idealized approach would evaluate landscape features to determine the most valuable habitat for wildlife and wildlife movement. Designation of these areas as "connectivity zones" along with a strategy for protecting significant habitat on both sides of the highway, would provide the most effective mitigation. Alternatively, build-out analyses could be used to determine what connections would likely remain after an area is developed following highway construction. Treating these areas as "connectivity zones" with the selective use of conservation easements and land acquisition to ensure proper connectivity, would be a less expensive form of mitigation. Mitigation planning based on both types of analysis may provide a practical and effective method for siting wildlife passage mitigation.

To mitigate highway impacts on wildlife we must focus both on reducing the impact of roadways on local populations and preserving ecological processes related to landscape connectivity and metapopulation dynamics. Mitigation strategies that focus too much on preserving local populations may be too expensive to be fully implemented, given the large numbers of species involved. A practical strategy for mitigating highway impacts should first focus at the landscape level, using the most effective techniques available to maintain landscape continuity and metapopulation dynamics within designated "connectivity zones." In addition to the maintenance of some level of ecosystem function, cost effective techniques should be practically employed along the highway alignment to maintain local wildlife populations.

In our opinion, a practical strategy for mitigating highway impacts on wildlife should include:

- avoidance of highway fencing and Jersey barriers when not used in association with wildlife passage structures,
- use of small (e.g. 2' x 2' minimum) amphibian and reptile passages wherever roadways pass along the boundary between wetlands and uplands,
- use of oversize culverts and expanded bridges at stream crossings,
- selective use of viaducts instead of bridges at important stream or river crossings,
- use of landscape-based analyses to identify "connectivity zones" where mitigation efforts can be concentrated to maintain ecosystem processes,
- selective use of wildlife overpasses and large wildlife bridges within "connectivity zones," and
- monitoring and maintenance plans to ensure that mitigation systems continue to function over time and that knowledge gained from these projects can be used to further refine our mitigation techniques.

Conclusion

Traditionally, highway impacts to wildlife have been viewed in terms of road mortality and threats to selected populations of animals. Viewing this issue from a landscape ecology perspective, it is clear that highways have the potential to undermine ecological processes through the fragmentation of wildlife populations, restriction of wildlife movements, and the disruption of gene flow and metapopulation dynamics.

Many questions remain about how to design roads, highways, and wildlife passage structures that will effectively mitigate the impact of roadways on animal movements and wildlife populations. However, much has been learned from projects around the world that can guide current approaches to mitigation. Through research, experimentation and the development of ecologically-based mitigation strategies, we should be able to identify practical and reasonable approaches for mitigating road and highway impacts on wildlife communities and ecosystems.

Acknowledgment

Funding for much of the research used in this paper came from the U.S. Environmental Protection Agency. Special thanks to Peter Oggier, Carme Rosell, and Carolyn Callahan, who hosted visits abroad to learn from projects in their countries. Thanks also go to the many people who took the time to meet with us and share their experiences with highway impacts and mitigation projects: Bruce Leeson, Andrew Eller, Dale Becker, Mark Lotz, Annette Piepers, Jeroen Brandjes, Pauline Schakenbos, Daniela Heynen, Stephen Gnieadeck, and Mark Kern.

References Cited

Brehm, K. 1989. The acceptance of 0.2 m tunnels by amphibians during their migration to the breeding site. pp. 29-42 In T.E.S. Langton (ed.) Amphibians and Roads, proceedings of the toad tunnel conference. ACO Polymer Products, Shefford, England.

Langton, T.E.S. 1989b. Tunnels and temperature: results from a study of a drift fence and tunnel system at Henley-on-Thames, Buckinghamshire, England. pp. 145-152 In T.E.S. Langton (ed.) Amphibians and Roads, proceedings
of the toad tunnel conference. ACO Polymer Products, Sheffield, England.

